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Descartes’s Logarithm Machine 

 
 
In the Geometry (1952), Descartes considered the problem of finding n mean 

proportionals (i.e. geometric means) between any two lengths 

� 

a  and 

� 

b  (with 

� 

a < b).  
That is, the problem is to find a sequence of lengths, beginning with 

� 

a  and ending with 

� 

b , such that the ratio of any two consecutive lengths is constant. Hence the terms of the 
sequence have a constant ratio of 

� 

r , and form a geometric sequence beginning with 

� 

a  
and ending with 

� 

b . 
In modern algebraic language, the problem is to find a sequence   

� 

x0,x1 ,…,  xn+1 
such that for some fixed ratio 

� 

r , 

� 

xk = a
.rk , and 

� 

xn+1 = b .  That is, n mean proportionals 
between a and b are n numbers between a and b, not counting a and b themselves. For a 
modern algebraist, solving this problem involves finding a (n+1)st root: 

b = a ⋅ rn+1

r =
b
a

n+1
 

A. Descartes’ linkage machine from the Geometry 
Book II of the Geometry shows the following illustration. 

 
Figure 1. Descartes's linkage machine. 

[Applet: DescartesLogPic.html] 
Descartes describes it as a linkage of (an infinity of) hinged rulers. The angle 

between rulers YZ and YZ can be adjusted, as can the position of point B on ruler YX. 
As the angle XYZ changes, rulers BC, DE, FG, etc., remain perpendicular to YX, and 
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rulers CD, EF, GH, etc. remain perpendicular to YZ, and the positions of points C, D, E, 
etc., move to keep these right angles. As the angle XYZ changes, point B traces a circle. 
Point D traces a more complicated curve AD; similarly, points F, H, etc. trace other, still 
more complicated, curves. 

For the rest of Book II, Descartes argues that processes like these should be 
considered as legitimate mathematical ways to define curves, rather than being 
restricted to the lines and circles (straightedge and compass constructions) of ancient 
Greek mathematics. Then he describes equations for the curves, and classifies the 
complexity of the curve by the algebraic degree of the equation.  

Example 1. Finding an equation for curve AD. (Following the work of 
translators Smith and Latham. Descartes left the work to the reader.) 
Call YA=YB=a, YC=x, and CD=y. 
Using similar triangles (ΔYCD  ΔYBC ) 

CD
CY

=
BC
BY

; that is, 
y
x
=
BC
a

 

Since the triangles are right triangles,  
BC 2 +YB2 = YC 2 , so BC 2 = x2 − a2 . 

Squaring the proportion and substituting gives 
y2

x2
=
x2 − a2

a2
 

Cross multiplying gives a polynomial equation of degree 4 that relates x and y. 
a2y2 = x2 (x2 − a2 )  

Try this (1).   Find equations for curves AF and AH. 
In Book III Descartes returns to this mechanism, and uses it to solve the mean 

proportionals problem geometrically. See the applet Descartes2MeanProp.html. This is 
what he says: 

To find two mean proportionals between YA and YE: 
Set the machine to start at A and draw the curve AD in Figure 1. Mark the point 

E. 

 
Construct a circle with diameter YE. Mark the intersection point, D, of the curve 

and the circle.  
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Use a circle with center Y to mark distance YD on line YE. Distance YD is one of 

the mean proportionals. Drop a perpendicular from D to line AE. The intersection point, 
C, is the other mean proportional. 

 
To see the rest of the relevant lines (and the right triangle for a geometric mean) 

from Figure 1, draw in line YD, and perpendiculars to YD and YE. 

 
Why are these the required mean proportionals? 
Here is a version of Figure 1 with only the lines. 
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Figure 2. Same construction as Figure 1, but lines only. 

There is a sequence of similar right triangles (see the geometric mean 
construction in the Lecture Notes Sim&GM.pdf) 

ΔYCB  ΔYDC  ΔYED  ΔYFE … , 
thus the proportions 

YC
YB
=YD
YC

=YE
YD

=YF
YE
=

 

If we set r = YC
YB

, then 

YC = rYB, YD = r2YB, YE = r3YB,  etc. 
That is, the lengths form a geometric sequence. 

Descartes, after stating that, "there is, I believe, no easier method of finding any 
number of mean proportionals, nor one whose demonstration is clearer," (1952, p. 155) 
goes on to criticize his own construction for using curves of a higher class than is 
necessary.  Finding two mean proportionals, for example, is equivalent to solving a 
cubic equation, and can be accomplished by using only conic sections (first class), while 
the curve traced by 

� 

D is of the second class.  The solution of cubics by intersecting 
conics had been achieved by Omar Khayyam, and was well known in seventeenth 
century Europe (Joseph, 1991, Berggren 1986).  Descartes spent much of the latter part 
of the Geometry discussing the issue of finding curves of minimal class (that is, degree) 
which will solve various geometry problems (1952). 

Descartes expounded an epistemological theory which sought a universal 
structural science of measure which he called "mathesis universalis". Fundamental to 
his program was his classification of curves in geometry.  He wanted to expand the 
repertoire of curves that were allowed in geometry beyond the line and circle, but he 
only wanted to include curves whose construction he considered to be "clear and 
distinct". For Descartes this meant curves which could be drawn with linkages and 
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classified by his system according to pairs of algebraic degrees.  These curves he called 
"geometrical" and all others he called "mechanical."   

This distinction is equivalent to what Leibniz would latter call "algebraic" and 
"transcendental" curves.  Descartes viewed "mechanical" (i.e. transcendental) curves as 
involving some combination of incommensurable actions.  Examples that he specifically 
mentioned are the spiral, quadratrix, and cycloid.  These curves all involve a 
combination of rotation and linear motion that cannot be connected and regulated by 
some linkage.  The drawing of such curves involves rolling a wheel or the unwinding of 
string from a circle.   

 
B. The graph of the logarithm function 

Next we’ll use Descartes’s machine to construct points on the graph of a 
logarithm function: y = logb x . See the applet DescartesGraph.html. 

Descartes did not think of curves in this way. He used the mathematics of his 
machine to solve a related problem posed by a correspondent. The construction that 
follows is not in Descartes; it is a repurposing of the machine, combined with the type 
of thinking that was historically used to construct logarithm tables. The result is a 
geometric version of a logarithm table, constructed without computations. 

A logarithm table is constructed by pairing an arithmetic sequence (generated by 
repeatedly adding a fixed number) with a geometric sequence (generated by repeatedly 
multiplying by a fixed number), then interpolating to fill in the gaps. (See the 
SlideRules.pdf Lecture Notes, if you haven’t already done it.)  Since Descartes’s 
machine constructs a geometric sequence between two values, it can interpolate any 
finite number N of subdivisions between two values in the geometric sequence column. 
The arithmetic column can be easily subdivided geometrically in the construction. 

Here’s how to build a simulation of Descartes' device for the construction of 
geometric sequences with 

� 

a =1 and ratio r. A dynamic geometry program is 
recommended, though you can use straightedge, compass, and squares. 

Let 

� 

O  be the origin of a rectangular coordinate system, and let 

� 

H  be any point on 
the unit circle.  Construct ray OH

 
. Construct perpendiculars alternately to OH

 
 and the 

x axis, giving points H , H2 , H 4 , H6 , etc., on OH
 

, and G1 , G3 , G5 , G7 , etc., on the x 
axis. By the previous reasoning, the distances G1 , H2 , G3 , H 4 , … form a geometric 
sequence. 

By moving 

� 

H  around the circle, the distances of the labeled points from the 
origin will form geometric sequences with any common ratio.   That is, if 

� 

r =OG1, then 

� 

r2 =OH2,  r
3 =OG3,  r

4 =OH4 ,  etc.     
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Figure 3. Construction of positive powers of r. 

This construction can also be extended to the interior of the unit circle to obtain 
segments whose lengths are the negative powers of 

� 

r .  Once again, as with the 
preceding construction, the odd powers of 

� 

r  are on the horizontal while the even 
powers of 

� 

r  are on ray OH
 

.   

 
Figure 4. Construction of negative powers of r. 

Use circles centered at 

� 

O  to mark the H distances on the x axis.  
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Figure 5. All powers of r marked on the x axis. 

Name the intersection points on the x axis  
…,G−6 , G−4 , G−2 , G0 = 1, G2 , G4 , G6 ,…, 

with the indices of the corresponding H’s. Thus we now have a geometric sequence, 
Gi = r

i , laid out on the 

� 

x -axis, whose common ratio or density can be varied as the 
point 

� 

H  is rotated.  
In order to construct logarithmic curves, we must now construct an arithmetic 

sequence {Ai}  on the 

� 

y -axis with a variable common difference.  In the diagram, these 
points are determined by the point A1  on the y axis. For each pair of points, Gi , Ai , with 
Gi  on the x axis and Ai  on the y axis, intersect a horizontal line at Ai  with the vertical 
line at Gi  to obtain a point on the logarithm curve. The resulting points have been 
connected with line segments, forming a piecewise linear approximation to a graph. 

 
Figure 6. An approximation to a logarithm curve. 
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Note that the horizontal and vertical lines form semilog graph paper: the scale in 
one direction is equally spaced, and in the other the spacing is logarithmic. Before the 
advent of computer graphing programs, this type of paper was used by scientists and 
others to try to find exponential and logarithmic relationships in data. 

This construction yields an adjustable curve.  By moving 

� 

H  around the unit 
circle, or A1  along the 

� 

y  axis, one can map any geometric sequence against any 
arithmetic sequence to obtain points on the graph of any logarithm function.  In Figure 
7, the point 

� 

H  is adjusted so that G1  is at 2 on the x axis, and the point A1 is at 1 on the y 
axis.  Hence the points lie on the graph of the log base 2. 

 
Figure 7. Widely spaced points on the graph of y = log2 x . 

Readjusting A1  and H so that A2=1 and G2 = 2 , the points are still on the graph of 
y = log2 x , but are more densely spaced. 

 
Figure 8. More densely spaced points on the graph of y = log2 x . 

Try this (2).   Explore this logarithm curve in more detail: 
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a) Figure out how to adjust H and A1  for specific logarithm curves. 
b) How can you get points on the graph of y = log3 x ? 
c) How can you get points on the graph of y = log10 x ? 
d) How can you get points on the graph of y = logb x  for any positive b? 
e) If you have points on y = logb x , how can you double the density of the points? 
f) Find the angle that OA makes with the x axis when H is at 2 and A1 is at 1.  
g) Find the base of the logarithm function when OA makes an angle of 45°  with the 

x axis. 
h) Find relationships between the angle that OA makes with the x axis, the 

coordinates of H and A1 , and the base of the resulting logarithm function. 
 

C. The derivative of the logarithm function 
See the applet LogSlope.html. 
After watching these log curves shift and bend dynamically, you can begin to 

look carefully at the slopes between points on the curves.  Several interesting patterns 
come to light. Suppose you want to use the slopes between constructed points to 
approximate the tangent slope at a point, say, for example, at (1,0).  It is visually 
apparent that using the point (1,0) in the calculation is not the best thing to do.  The 
slope between the nearest points to the right and left gives a better approximation of the 
tangent slope.  This is true for most curves, not just the logarithm. Here, at (1,0), we 
want to calculate the secant slope between 

� 

G-1 and 

� 

G1.   Letting 

� 

r  equal the common 
ratio of the geometric sequence, and 

� 

d  equal the common difference of the arithmetic 
sequence, the slope k at (1,0) is 

k = slope at (1,0) = 2d

r − 1
r

= 2rd
r2 −1

. 

Now approximate the slope at any other point on the constructed curve.  This 
approximate slope at 

� 

(Gn ,  An ) = (r n,  nd) , is found by computing the secant slope between 

� 

Gn-1 and 

� 

Gn+1 .  The calculation yields:      

� 

slope at (Gn ,  An ) = 2d
r n+1 − r n−1 = 1

r n
⋅

2rd
r 2 −1 = k

rn . 
Here we have the approximate tangent slope at a point on a logarithm written as 

1 over the x value times a constant.  The constant 

� 

k  is the slope of the curve at (1,0).  Of 
course these slopes are all approximations, but once the slope at (1,0) is approximated it 
can be divided by the 

� 

x -coordinate at any other point to get the corresponding slope 
approximation at that point.  By making the constructed points on the curve denser the 
approximations all improve together at the same rate.  Thus the essential derivative 
property of logarithms is revealed without recourse to the usual formalisms of calculus.  
In fact, even more is being displayed here than the usual derivative of a logarithm.  One 
sees that the all the slope approximations converge uniformly as the density of the 
constructed points is increased. 
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It is strange that when the derivative is developed in calculus classes, it is 
defined using secant slopes from the point in question, rather than around the point.  It 
would seem that nobody is directly interested in secant slope approximations, except as 
an algebraic device from which to define a limit.  The practical geometry of secant 
slopes is ignored. 
D. More exercises  

The idea of interest in finance goes back to the ancient Babylonians.  
Try this (3).   Suppose you will need $5,000 a year from now, and have $4,000 to save 

now.  
a) If interest is compounded monthly, what rate would you need to have $5000 by 

the end of the year? 
b) Explain what compound interest has to do with logarithms and mean 

proportionals. 
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